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Abstract
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Pseudomonas aeruginosa in Fish and Fish Products: A Review on the 
Incidence, Public Health Significance, Virulence Factors, Antimicrobial 
Resistance, and Biofilm Formation

Pseudomonas aeruginosa (P. aeruginosa) is a psychotropic pathogenic bacterium that is considered one of the 
most common spoilage microorganisms related to seafood’s consumption. P. aeruginosa is widely distributed 
in nature and isolated from soil, plants, animals, and water. Because of its high resistance to a wide range of 
antibiotics, P. aeruginosa is more dangerous than other spoilage bacteria. It possesses a diverse set of virulence 
factors capable of causing severe and aggressive infections in humans and animals. Antibiotic resistance genes 
are easily transmitted to humans via contaminated seafood, resulting in a serious antibiotic resistance. The 
ability of P. aeruginosa to form a biofilm maintains its environmental survival and allows its quick adaptation 
to harsh environments. Therefore, for the benefit of customers and public health globally, the safety and bac-
teriological quality of commercially processed fish and its products are crucial.
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INTRODUCTION

Pseudomonas aeruginosa is a highly pathogenic rod-shaped, 
Gram-negative bacterium which belongs to family Pseudomona-
daceae, a member of γ-proteobacteria, that is found abundance 
in water, plants, soil, and animals (Ali et al., 2021). The most fre-
quently isolated bacteria from spoiled seafood are psychrotoler-
ant Pseudomonas spp., which produce off flavors and odours as 
well as slime, which lowers the quality of the product (Benie et al., 
2017). The prevalence of P. aeruginosa infection, which includes 
infections of the digestive system, is 17% in underdeveloped na-
tions and 11.5% in Europe, contaminated fish with enterotoxi-
genic P. aeruginosa causes diarrhoea, gastrointestinal disorders, 
and skin infections, especially in patients who are immunocom-
promised (Losito et al., 2022; Ziarati et al., 2022).

The pathogenicity of P. aeruginosa is associated with the 
presence of numerous virulence factors, some of which are re-
lated to the bacterial cell surface and include lipopolysaccharide, 
flagella, type IV pili, type III secretion system, exotoxin A, proteas-
es, and alginate, which contribute in the transformation of active 
proteins as well as the adherence and colonization of bacteria 
within a host cell (Ali et al., 2023).

P. aeruginosa is known for its resistance to an extensive va-
riety of commonly used antibiotics. As a result, it appears to be 
more hazardous than other food-spoilage bacteria because it is 
capable of transmitting multi-drug-resistance (MDR) plasmids 
to individuals after ingesting infected undercooked fish and fish 
products containing MDR P. aeruginosa (Shahrokhi et al., 2022).

The majority of Gram-positive and Gram-negative bacteria, 
such as Escherichia coli, Klebsiella pneumoniae, Vibrio vulnificus, 

Enterococcus faecalis, Staphylococcus aureus, Streptococcus viri-
dans, Proteus mirabilis, and Pseudomonas aeruginosa, are capa-
ble of forming biofilm (MubarakAli et al., 2023). P. aeruginosa is 
shielded from exposure to atmospheric oxygen and high antibiot-
ic concentrations by biofilms, which are structured communities 
of bacterial cells that offer increased resistance to environmental 
stresses (Vetrivel et al., 2021). Since even low concentrations of 
antibiotics could act as stress signals, biofilm formation is a pro-
tective response against the effects of antibiotics. The primary 
physical obstacle influencing the penetration of antibiotics can 
be attributed to the biofilm matrix (El Bayomi et al., 2020).

As a result, in this review, the characteristics of P. aeruginosa 
food poisoning public health impacts including contamination of 
fish and fish products by this important pathogen, virulence fac-
tors, antimicrobial resistance profile, and biofilm formation were 
explored.

Fish and fish products as potential sources of P. 
aeruginosa

 
The microbiological quality of fish and various types of sea 

food must be managed due to the rising consumption of these 
products. Fish is rich in omega 6, omega 3, protein, minerals, and 
vitamins (Morshdy et al., 2022a). Fish and seafood are more liable 
to microbial deterioration than other type of meat due to a high-
er moisture content and a lower pH. Microbial decomposition of 
fish may cause off flavor, off-odor, slime formation, and discol-
oration that makes it undesirable for consumption (Morshdy et 
al., 2019) Pseudomonadaceae are aerobic bacteria that are able 
to develop in the presence of oxygen. However, the total number 
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of Pseudomonas spp. in a vacuum and CO2-packed preserved fish 
is diminished (Lougovois and Kyrana, 2005). Pseudomonads are 
among the most significant specific spoiling organisms (SSOs), as 
their excessive proliferation accelerates the splitting of nitroge-
nous materials, which causes product deterioration (Zhang et al., 
2021). Numerous studies have shown that Gram-negative bac-
teria from the Pseudomonadaceae family are among the most 
productive populations of microbes to extracellular proteolytic, 
lipolytic, and saccharolytic enzymes (Abbamondi and Tommona-
ro, 2022). The most prevalent Pseudomonas species isolated from 
fish are P. fluorescens, P. lundensis, P. fragi, P. anguilliseptica, and P. 
putida (Abd El Tawab et al., 2016). P. aeruginosa is the most com-
mon Pseudomonas species in food products, but it is not widely 
distributed (Heir et al., 2021). 

Pseudomonas aeruginosa Characteristics and 
Public health impact

P. aeruginosa can survive via water, on various surfaces, and 
on medical devices with the aid of its powerful adhesion com-
ponents, including flagella, pili, and biofilm. P. aeruginosa is 
therefore prevalent in both natural and artificial settings, such 
as lakes, hospitals, and household washbasin drains (Remold et 
al., 2011). P. aeruginosa is an opportunistic pathogen that infects 
people with a variety of illnesses (Figure 1). P. aeruginosa is the 
second most common pathogen associated with ventilator-re-
lated pneumonia, the seventh major causative pathogen of cath-
eter-linked bloodstream infections, and the sixth most frequent 
organism associated with nosocomial infections (Hidron et al., 
2008). In addition, infections at the surgical site, infections of the 
urinary tract, burn infections of wounds, keratitis, and otitis media 
(Ito et al., 2021). It is now a significant contributor to resistance to 
antibiotics and nosocomial illnesses (Shariati et al., 2018). 

P. aeruginosa is an organism that can quickly acquire anti-
biotic resistance, adapt to environmental changes, and produce 
a wide range of virulence factors. The fact that this pathogen is 
capable of bypassing both innate and acquired immune defenses 
through adhesion, colonization, and biofilm formation, as well 
as the production of various virulence factors that cause sub-
stantial harm to tissues and this makes it a threat to immuno-
compromised individuals. Additionally, it contributes to illnesses 
with high mortality rates in people with cystic fibrosis, infections 
in newborns, tumors, and serious burns (Nathwani et al., 2014). 
When insufficient treatment is used to treat P. aeruginosa infec-

tions, especially when multidrug-resistant (MDR) strains are in-
volved, infections can be fatal (Bail et al., 2022). For the past 30 
years, multidrug resistance has posed a threat to both human and 
animal health (Sarabhai et al., 2013). Additionally, P. aeruginosa is 
one of the most common pathogens in hospital settings and is 
responsible for more than 50% of healthcare-acquired infections 
(McKay and Bamford, 2015). Although new antimicrobial medi-
cations have been created, P. aeruginosa mortality rates remain 
high, which range from 20 to 60% (Kang et al., 2003). The primary 
contributory factors of P. aeruginosa infections are structural lung 
diseases, hematological neoplasms, transplantation, burned skin, 
current antibiotic use, the presence of implants, extended hospi-
talization, and mechanical ventilation (Reynolds and Kollef, 2021). 

Pseudomonas aeruginosa virulence factors

By producing a wide range of virulence factors, P. aeruginosa 
has the capability to adjust to the unfavorable environment in 
hosts and enhance the likelihood of illness and infection (Vidai-
llac and Chotirmall, 2021). First, lipopolysaccharide (LPS) is a cru-
cial surface structural element to safeguard the external host cells 
toxins. The endotoxicity of the lipid A in LPS facilitates damage 
to tissues, attachment, and recognition by host receptors (Park et 
al., 2022). The LPS may be involved in the creation of biofilms and 
antibiotic resistance (Chambers et al., 2017). The second is that 
outer membrane proteins (OMPs) support adhesion, exchange of 
nutrients, and resistance to antibiotics (Sabnis et al., 2021). The 
third is that the flagellum, pili, and other adhesins are correlat-
ed with drug resistance triggered by biofilm formation (Ozer et 
al., 2021). Fourth, there are six different categories of secretion 
systems. These include flagella (T6SS-associated), pili (T4SS), and 
multi-toxin components type 3 secretion system (T3SS), which 
are used for colonizing the host, adhering to it, swimming, and 
swarming in response to chemotactic signaling. Finally, exopoly-
saccharides like alginate, Psl, and Pel may hinder bacterial clear-
ance while aiding in the formation of biofilms (Ozer et al., 2021). 

Concerning toxins produced by P. aeruginosa, T3SS is an in-
tricate system that has the potential to seriously impair host de-
fense by injecting cytotoxins such as ExoU, ExoT, ExoS, and ExoY. 
These toxins have an impact on the intracellular environment, 
particularly by inhibiting phagocytosis and clearance of bacte-
ria. Exotoxin A (ETA) can prevent the production of host proteins 
by activating ADP ribosylation (Yang et al., 2022). Additionally, 
pyocyanin is hazardous to hosts, exacerbates disease, harms host 
tissue, and negatively impacts organ function (Alatraktchi et al., 
2020). In addition, a significant number of lytic enzymes that con-
trol additional virulence factors include the elastases LasA and 
LasB, alkaline protease (AprA) LipC lipases, phospholipase C, and 
esterase A (Chadha et al., 2022). Furthermore, lung epithelial or 
tracheal cells can suffer from direct harm from tight junction de-
struction and lung surfactant degradation caused by rhamnolip-
ids (Zhao et al., 2021). Additionally, siderophores (pyoverdine and 
pyochelin) function as iron uptake systems to aid bacterial sur-
vival in environments with low levels of iron, increasing virulence 
(Perraud et al., 2022). Finally, in phagocyte environments, reactive 
oxygen species (ROS) are neutralized by antioxidant enzymes like 
catalases (KatA, KatB, and KatE), alkyl hydroperoxide reductases, 
and superoxide dismutases to prevent bacterial clearance (Dar et 
al., 2021).

Antibiotic resistance in P. aeruginosa

Under increasing stress at aquatic systems, numerous studies 
show that the usage of antimicrobial agents in fish farming has 
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Figure 1. Pseudomonas aeruginosa primary infections
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been increased as a result. Investigators estimate that by 2030, 
approximately 13,495 tons of antimicrobials will be applied to 
aquaculture, corresponding to 5.7% of the total amount used 
globally (including those utilized in humans and all other ani-
mals) (Ben Mhenni et al., 2023). This also attracts consideration 
to the reality that most antimicrobial categories are employed 
to treat infections caused by bacteria in both veterinary and hu-
man medicine. This accelerates the generation of drug-resistant 
bacteria, and antimicrobial-resistant bacteria may diminish treat-
ment efficacy, particularly in infections caused by Gram-negative 
bacteria (Delannoy et al., 2022). Additionally, overusing of antibi-
otics during therapy hastens the emergence of multidrug-resis-
tant P. aeruginosa strains, rendering antibiotic therapy ineffective 
against this pathogen (Hirsch and Tam, 2010). As a result, improp-
er application of antibiotics in aquaculture contributes to the in-
creasing prevalence of antimicrobial resistance (AMR), potentially 
resulting in animal, human, and ecosystem consequences (Schar 
et al., 2020). According to Hancock and Speert (2000), P. aeru-
ginosa exhibits resistance to a number of antibiotics, including 
β-lactams aminoglycosides and quinolones. The main defense 
mechanisms employed by P. aeruginosa against antibiotic out-
break can generally be divided into intrinsic, acquired, and adap-
tive resistance. Numerous Pseudomonas strains have been found 
to have a significant degree of intrinsic resistance to the majority 
of antibiotics (Kačániová et al., 2017). The simultaneously mech-
anisms of low outer membrane permeability, efflux systems that 
remove antibiotics from cells, and the synthesis of antibiotic-in-
activating enzymes like lactamases are the main contributors to 
this intrinsic resistance (Breidenstein et al., 2011). 

Recent investigations confirmed that various strains of Pseu-
domonas spp. are able to be resistant to some antimicrobial 
agents of different classes, particularly lactams such as penicil-
lins, cephalosporins, carbapenems, and monobactams (Elbehiry 
et al., 2022). According to the World Health Organization, P. aeru-
ginosa is carbapenem-resistant (Karampatakis et al., 2018). In this 
regard, Kačániová et al. (2019) demonstrated a high percentage 
of resistant isolates among Pseudomonas spp. identified in fish. 
Furthermore, all Pseudomonas spp. were meropenem resistant. 
As reported by Fazeli and Momtaz (2014), Pseudomonas strains 
displayed the greatest degree of resistance to penicillin (100%), 
followed by tetracycline (90.19%), streptomycin (64.70%), and 
erythromycin (43.13%). P. aeruginosa develops a biofilm in the 
lungs of infected patients, acting as a diffusion barrier to prevent 
the bacterial cells from being exposed to antibiotics (Drenkard, 
2003). The biofilm can also develop multidrug-tolerant persisted 
cells, which can withstand antibiotic treatment (Mulcahy et al., 
2010).

Biofilm formation ability of P. aeruginosa

One of the most important mechanisms for species survival 
despite unanticipated changes in living conditions, such as tem-
perature and nutrition availability, is the biofilm, which is an ex-
tensive collection of bacteria enclosed in a self-generated struc-
ture of extracellular polymeric substances (Ahmed et al., 2018; 
Morshdy et al., 2022b). Due to an increase in rates of mutations, 
an increase of efflux pumps, a reduction in metabolic activity, 
and other physical variables, resistance to antibiotics in attached 
bacteria is approximately 1000 times greater than in planktonic 
cells (Høiby et al., 2010). P. aeruginosa settles a variety of surfaces, 
such as medical supplies and equipment used in the food indus-
try, and forms biofilms that result in chronic infections because of 
the organism’s increased resistance to antibiotics, different irra-
diation therapies, environmental factors, disinfecting agents, and 

immunity (Stewart and Costerton, 2001). 
P. aeruginosa biofilms can typically grow on abiotic surfac-

es like industrial machinery or medical implants. P. aeruginosa 
produces infections with the help of numerous virulence factors 
based on the cell such as lectins, pili, lipopolysaccharide, alginate, 
and secreted virulence factors (cytotoxin, pyocyanin, proteases, 
siderophores, hemolysins, exotoxin A, exoenzyme S, exoenzyme 
U (Strateva et al., 2011). Six separate stages make up the develop-
ment of the biofilm. Stage 1: Via the assistance of cell appendag-
es such flagella and type IV pili, bacterial cells adhere to a surface 
(Klausen et al., 2003). Flagellar movement restriction has been 
linked to twitching motility and the formation of exopolysaccha-
rides required for surface association (Guilbaud et al., 2017), but 
this adherence is reversible. Stage 2: The transition of bacterial 
cells from reversible to irreversible adhesion. Stage 3: Progression 
of connected bacteria into microcolonies, which have a more or-
ganized architecture. Stage 4: As a biofilm matures, these micro-
colonies grow into substantial three-dimensional mushroom-like 
structures. Stage 5: To release dispersed cells, the matrix cavity in 
the center of the microcolony is destroyed by cell autolysis (Ma 
et al., 2009). Stage 6: The biofilm cycle can then repeat after the 
change from sessile to planktonic growth mode for seeding of 
uncolonized areas (Rasamiravaka et al., 2015). 

L-glucuronic acid and D-mannuronic acid make up the un-
branched polymer chain known as alginate. For the biofilm struc-
ture to be safeguarded and to remain stable, this polymer is cru-
cial. Alginate helps to keep the matrix’s nutrients and water from 
degrading by preserving its contents (Rasamiravaka et al., 2015). 
Another significant component of P. aeruginosa biofilm is eDNA, 
which functions as a nutrient base for embedded bacteria and 
is involved in cell-to-cell communication (Mulcahy et al., 2010). 
P. aeruginosa biofilm structure stability is maintained by many 
polysaccharides, which comprise pel, alginate, and psl (Ghafoor 
et al., 2011).

CONCLUSION

Pseudomonas aeruginosa is one of the most prevalent emerg-
ing bacteria commonly isolated from fish and fish products. Re-
covery of multi-drug resistant (MDR) P. aeruginosa strains serves 
as a cautionary tale for the appropriate use of antibiotics. Antimi-
crobial susceptibility screening must be carried out on a regular 
basis for the purpose of avoiding the development of antibiot-
ic-resistant strains that could pose a public health concern. The 
majority of Pseudomonas species easily form biofilms and persist 
as the etiological agent of biofilm-mediated illnesses that result 
in chronic infectious diseases and recurrent infections. Numerous 
studies and approaches have been used to control the pathogen-
esis of biofilm formation and understand the underlying mecha-
nism of biofilm development.
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