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Machine learning algorithms for clinical mastitis prediction in a dairy 
herd use automated milking system data

Introduction

Clinical Mastitis (CM) is the most frequent production disorder of 
dairy farming. It has a negative impact on both animal health and pro-
duction efficiency (Ruegg, 2017). Annually, about 20–40% of all the herd 
lactating cows suffer one or more cases of CM (Hogeveen et al., 2019), 
which results in an average failure cost of $147 per cow per year, particu-
larly contributed by milk production losses and culling, which represents 
11% to 18% of the gross margin per cow per year (Cheng and Han, 2020). 
In addition to lower milk yield, the prevalence of CM results in a financial 
burden to the farmers. This is due to the fact that each CM case involves 
veterinary expenses, therapeutic costs, labor costs, non-saleable milk dis-
card, premature culling loss, future reproductive problems, replacement 
costs, and death (Ghafoor and Sitkowska, 2021). For all these reasons, it 
becomes crucial to predict CM very early. 

Technological innovation in the last decades has impacted numerous 
facets of the modern dairy industry. This encourages many farms to im-
plement an automatic milking system (AMS), despite its higher economic 
initial cost (Bausewein et al., 2022). Reducing the workload and providing 
a more flexible work schedule (Vik et al., 2019) are not the only benefits 
of the AMS, but also a vast quantity of cow-level dairy data become avail-
able (King et al., 2018). However, till now there is a shortage in data min-
ing and integration which implies that these data are not being utilized to 
their full potential. As a result, multiple dairy farming issues such as poor 
longevity, low performance, and health problems remain uncontrolled 
perfectly (Cockburn, 2020).

Advanced data analysis techniques such as machine learning (ML) 
methods may offer new advances in precision livestock management, 
involving critical disease detection and prediction, production manage-
ment, and farming decision-making processes (Hossain et al., 2022).  
ML is a subfield of computer science that gives computers the ability to 
“learn” without being explicitly programmed. Generally, ML is suitable for 
handling large and high-dimensional datasets and prioritizes predictive 

accuracy over hypothesis-driven inference (Bi et al., 2019). 
The early detection of cows with a high risk of health problems, such 

as lameness, clinical and subclinical mastitis, ketosis, and metritis, is cru-
cial for dairy farms. It enhances and prevents the negative impacts of 
these disorders early (Zhou et al., 2022). The ML methods are progres-
sively finding their way into the dairy industry in this regard.  For example, 
Dhoble et al. (2019) combined ML and Cytometric fingerprinting for the 
early prediction of Bovine Mastitis through the evaluation of the micro-
biological milk quality. Also, the ML was applied for the detection of claw 
lesions in dairy farms (Volkmann et al., 2021), and for the prediction of the 
calving time in dairy cows using the behavioral and activity sensors data, 
a recurrent neural network ML algorithm was used (Keceli et al., 2020).

Unlike traditional statistical methods, ML models can analyze cate-
gorical data accurately and are insensitive to missing data (Fatima and 
Pasha, 2017). Also, they can deal with the complex, nonlinearity, and out-
liers problems of the data (Dong et al., 2022). However, the ML proves 
great potential for precision livestock farming, particularly in the domain 
of early disease prediction (Gokul Krishnaet al., 2023). There are few liter-
ature use ML for CM prediction in dairy cows. At the same time, there are 
no studies that used ML for CM prediction in Egypt in dairy cows. 

Therefore, the objective of this article is twofold. First, to establish 
six different supervised ML algorithms for classification and prediction of 
CM onset in Friesian female dairy cattle using automated milking system 
data. These methods are the Support Vector Machine (SVM), the logistic 
regression (LR), the Gaussian Naïve Bayes (NB), the K-nearest neighbor 
(KNN), the Classification and Regression Decision Tree (CART-DT), and 
the Random forest (RF). The second is to compare the accuracy, precision, 
F1-Score, Recall, and Area under the ROC curve (AUC) of the six models 
aiming to select the optimal model.

Materials and methods

In this article, we tried to build an ML predictive model of cow CM us-
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ing available data from an AMS database. A  retrospective cross-sectional 
survey was conducted to collect a random sample of automatic-made 
records directly from a dairy farm. However, the raw data might not be 
sufficient to yield results immediately. Firstly, some data preparation is 
necessary before using the predictive model.

Ethical approval

The current work was approved by the Committee of Animal Care 
and Welfare, Benha University, Faculty of Veterinary Medicine, Egypt 
(BUFVTM:17-04-23).

Data collection

The original data was collected from a private commercial Egyptian 
dairy farm located at 80th Km of Cairo Alexandria desert road during the 
period extending from July 2016 to November 2019. A total of 3880 dairy 
records of Holstein Friesian cows (containing the dairy and some health 
information of each cow during its last production season) were select-
ed randomly from different five units on the farm. Cows were housed in 
an open yard shaded with free stalls, the floor was lined with sand, and 
equipped with a cool spraying system in the summer thus relieving heat 
stress in the summer months. A total mixed ration method with comput-
erized calculating systems was used that controls feeding portions ac-
cording to the reproductive and productive demands of animals. All day 
long water was supplied freely to animals. Pre-milking and post-milking 
udder hygiene measures were practiced by dipping the teats in an iodine 
solution. The milking process was performed in a herringbone with a rap-
id exit automatic milking parlor three times a day using machine milking, 
and milk parameters for each cow were recorded in a computerized da-
tabase. Detection of CM depends on the presence of clinical signs on the 
udder such as hotness, redness, swelling, painful reaction, and hardness 
of udder tissues, and then the infection is confirmed by the California 
Mastitis Test (CMT).  15 features were selected to study their impact on 
the prediction model of CM including the reproductive status (Pregnant, 
not pregnant, and bred), lactation order, age at the last season (years), 
average daily milk yield (DMY), total milk this lactation (TOTM), milk peak 
(MPEAK), 305 days mature herd equivalent (305 ME), days in milk (DIM), 
days open, calving season (summer extend from 21st  March to 20th  
September and winter extend from 21st  September to 20th  march), 
lameness, abortion, metritis, milk fever, and retained placenta onset (all 
classified into yes and no). The output variable to be predicted was CM 
which was classified into (yes = Mastitis, and no = healthy).

Data pre-processing

Data pre-processing is an initial step of the ML including cleaning, 
scaling, transformation, and feature engineering to make the quality of 
data better for building a predictive model of optimal classification per-
formance (Iliou et al., 2015). 

The first pre-processing step was the data visualization which re-
vealed no missing values in the data. The CM prevalence was 38.5%. Ta-
ble 1 presents the mean and standard deviation (SD) of the independent 
numerical features divided according to CM positive or negative. Figure 1 
shows the distribution of the independent categorical feature frequencies 
versus the CM.

The second step was identifying the independent and dependent 
features and labeling the categorical features (reproductive status, calv-
ing season, lameness, abortion, metritis, milk fever, retained placenta, and 
mastitis) using the Label-Encoder.  Outliers were detected graphically as 
shown in Figure 2 by using a boxplot and statistically by using the inter-
quartile Range Method (IQR). The IQR is defined as the difference be-
tween Q3 (the 75th percentile) and Q1 (the 25th percentile) and any value 
outside the range of [Q1 − 1.5 × IQR or Q3 + 1.5 × IQR] is considered 

to be an outlier (Li et al., 2021). The outliers have been replaced with 
percentile for the features; (lactation order, age at the last season, DMY, 
TOTM, MPEAK, 305ME, and days open). Figure 3 shows the boxplot after 
the outliers transformation.

The Z-score standardization method for data scaling was used. The 
values for an attribute, A, were standardized based on the mean (µ) and 
the standard deviation (σA) of A.  Avalue, vi, of A was normalized to vi by 
computing:

                                                      (Han et al, 2012).

For feature extraction, we computed the autoencoders (AE) method. 
Figure 4 presents the plot of the AE model with no compression. The 
AE is an unsupervised neural network that consists of two linked parts: 
the encoder and the decoder. The encoder learns how to interpret the 
input and compresses the input into a latent representation called (the 
bottleneck layer), while the decoder takes the output of the encoder and 
tries to reconstruct the input again from the intermediate code (Ardelean 
et al., 2023). 

Finally, data were randomly split into a training set (90% of the sam-
ple) for model training and a testing set (10% of the sample) for verifica-
tion of the prediction performance. Models were prepared using 10-fold 
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Features

Clinical Mastitis

Positive Negative

Mean SD Mean SD

Lactation order 2.7 1.6 2 1.4

Age at the last season 4.1 1.87 3.24 1.6

DMY 26.6 11 31.5 10.9

TOTM 8445.8 4548.2 6142.7 4810.4

MPEAK 43.8 9.9 41.16 9

305ME 10673.5 2305.8 11184.1 2060.4

DIM 287.9 156.6 213.5 167.1

Days open 211.8 149.4 161.1 142.7

Table 1. Summary statistics for the numerical independent features.

SD: standard deviation; DMY: average daily milk yield; TOTM: total milk this lactation; 
MPEAK: milk peak; 305ME: 305 days mature herd equivalent; DIM: days in milk.

Fig. 1. The distribution of the independent categorical features frequencies versus the CM.



cross-validation (CV) + a grid search method of hyperparameters opti-
mization. The estimation of model accuracy was based on the average of 
the 10-fold repeated CV over the total number of the candidate values 
of each parameter in the grid search as shown in Table 2. The tuned best 
hyperparameters giving the best validation accuracy were then used to 
build the predictive algorithm.

ML algorithm

Six classification ML algorithms were selected and implemented to 
build CM prediction models, which were SVM, LR, Gaussian Naïve Bayes, 
KNN, CART-DT, and RF.

SVM Method

The general idea of the SVM as shown in Figure 5, was to obtain an 
optimal hyperplane that linearly separates the d-dimensional data per-
fectly into its two classes such that the marginal distance was maximum 
between the hyperplane and the support vectors; the nearest instance of 
each class to the hyperparameter (Schölkopf, 2003).

The best optimal hyperparameters for establishing the SVM model 
after fitting 10-folds for each of 54 candidate values of grid search (total-
ing 540 fits) were: C-parameter of 0.01, kernel function was linear, and a 
kernel coefficient gamma of 0.1.
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Fig. 2. Shows the boxplot for the numerical features containing outliers. Fig. 3. Shows the boxplot for the numerical features after the outliers transformation.

Algorithm Grid-search parameters Final optimal parameters Validation accuracy (%)

SVM

C: [0.01, 0.05, 0.1, 0.5, 0.8, 1] C: [0.01]

73Kernel: [Linear, RBF, sigmoid] Kernel: [Linear]

Gamma: [0.1, 1, auto] Gamma: [0.1]

LR

Fit intercept: [True, False] Fit intercept: [True]

70
penalty: [l1, l2] penalty: [l2]

C: [0.1, 0.2, 0.3, 0.5, 1, 5, 10, 100] C: [0.1]

Solver: [ lbfgs, liblinear, newton-cg, newton-cholesky, sag, saga] Solver: [lbfgs]

Gaussian NB var_smoothing: np.logspace(0,-9, num=100) var_smoothing: 1.0 69

KNN

n_neighbors: [1,2,3,5] n_neighbors: [1]

63weights: [uniform, distance] weights:[uniform]   metric:[Euclidean]

metric: [Euclidean, Manhattan, Hamming, Jaccard, Cosine]

DT

criterion: [Gini, Entropy] criterion: [Gini]

71
max_depth: [3, 5, 7, 9, 11] max_depth: [3]

min_samples_split: [2, 3, 5, 10] min_samples_split: [2]

min_samples_leaf: [1, 2, 4] min_samples_leaf: [1]

RF

n_estimators: [50, 100, 200, 2000] n_estimators: [50]

70

criterion: [Gini, Entropy] criterion: [Gini]

max_depth: [3, 5, 7] max_depth: [3]

min_samples_split: [2, 5, 7] min_samples_split: [2]

min_samples_leaf: [1, 2, 4] min_samples_leaf: [1]

max_features: [auto, sqrt, log2] max_features: [auto]

SVM: Support vector machine, LR: Logistic regression, Gaussian NB: Gaussian Naïve Bayes, KNN: K-Nearest Neighbor, DT: Decision tree, RF: Random forest.

Table 2. Grid search parameters and the final optimal parameters for each algorithm.



The LR

The LR is a classification-supervised ML algorithm developed for pre-
dicting a binary outcome for an event based on the previous observations 
of a data set (Nusinovici et al., 2020).

The LR model was given by the linear relation between the logit and 
the values of the explanatory variables as: 

where π is the outcome probability, Log(π/(1-π)) is the log of odds, 
β0 is the intercept, β1 is the regression coefficient of the X1  independent 
variable (predictor), and βk is the regression coefficient for the Xk indepen-
dent variable (Bender, 2009).

The best optimal hyperparameters for building the LR model after 
fitting 10-folds for each of 192 candidate values of grid search (totaling 
1920 fits) were: C-parameter of 0.1, fit-intercept: True, regularization pen-
alty function l2, and lbfgs solver.

The Gaussian NB

The NB is a simple but powerful probabilistic supervised ML classifier 
based on the Bayes theorem that greatly simplifies learning by assuming 
that features are independent given classes. Although independence is 
generally a poor assumption, in practice naive Bayes often compete well 
with more sophisticated classifiers (Lee et al., 2001).

Var_smoothing (in this case np. logspace starts from 0, ends at -9, 
and generates 100 samples) is the only hyperparameter to be tuned for 
the Gaussian NB algorithm. After fitting 10 folds for each of 100 candi-
date values of grid search (totaling 1000 fits), Var_smoothimg =1 was the 
best hyperparameter.

The KNN

One of the most popular supervised ML classification algorithms 
is the distance-based algorithm. It is based on computing the distanc-
es between the new test instance and all training instances, sorting the 
distances to determine the K-nearest neighbors, and then allocating the 
test instance to the class that owns the majority of K-nearest neighbors 
(Ali et al., 2019).

The most common distance function is Euclidean distance  as 

 ,
where x = x1, x2,…, xm, and y = y1, y2,…, ym represent the m attribute 

values of two records (Task, 2014).
For tuning this model, 10-folds of CV for each of 40 candidate values 

of K (number of neighbors), the distance metric, and the weights (totaling 
400 fits) were run and the optimal parameters were k=1, distance metric 
was the Euclidean distance, and the weights are uniform.

The CART-DT

A DT is a flowchart-like tree in which each internal node refers to a 
choice between several alternatives, and each leaf node represents an 
output class (decision). A DT starts with a root node and then continues to 
split till reaches the final classification or decision at the leaf node (Sonia 
Singh, 2014).

CART-DT was applied in our study, it constructs binary trees as each 
internal node has only two splitting edges. The selection of the best attri-
butes depends on the Gini index criteria and the final tree is pre-pruned 
by the cost–complexity Pruning. It is also characterized by its ability to 
handle both categorical and numerical features and outliers (Charbuty 
and Abdulazeez, 2021). The DT optimal hyperparameters were obtained 
after fitting 10-fold of CV for each of 120 candidate values of grid search 
(totaling 1200 fits). The splitting criteria were Gini index, the maximum 
depth of DT was 3, Min_samples_leaf which indicates the minimum sam-
ples the leaf node must possess was 1, Min_samples_split which indicates 
the minimum sample number an internal node must possess before split-
ting was 2.

The RF

The RF is a grouping of a large number of ensemble DTs in which 
each tree depends on a random vector value sampled independently and 
with the same distribution for all trees in the forest (Kullarni and Sinha, 
2013). Substantial gains in classification and regression accuracy can be 
achieved by using ensembles of trees, where each tree in the ensemble 
is grown by a random parameter called bootstrap aggregating or simply 
bagging. Final predictions are obtained by either majority voting or av-
eraging, based on results from all decision trees in the forest (Klusowski, 

Fig. 4. Shows the AutoEncoder (AE) model plot with no compression for the feature ex-
traction.

Fig. 5. The general idea of linear support vector machine (SVM).
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2018).
10-fold CV for each iteration of each 486 grid search value in a total 

of 4860 fits were run to tune the model and stand on the optimal param-
eters for the RF. The Gini index splitting criteria was the best, the n_esti-
mator that represents the number of RF trees was 50, the max_depth was 
3, Min_samples_leaf was 1, and Min_samples_split was 2.

Validation and performance metrics

The first metric is called a confusion matrix is shown in Table 3. It 
visualizes the performance of a Supervised ML algorithm for binary data 
classification. Each column of the matrix represents the number of pre-
dictions in each class, while each row represents the instances in the real 
class. It enables us to calculate the total number of false negatives (Incor-
rectly identified negative class (TFN), false positives (Incorrectly identi-
fied positive class (TFP), true negatives (Correctly identified negative class 
(TTN), and the total true positives (Correctly identified positive class (TTP) 
for each class (Mathkunti and Rangaswamy, 2020).

The confusion matrix is then used for calculating the 5 used perfor-
mance metrics for comparing the ML models:
Accuracy =  ((TTP+TTN))/((TTP+TTN+TFP+TFN))
Recall=  TFP/((TFP+TTN))
Precision =  TTP/((TTP+TFP))
F1-score = 2 ×  (Percision × Recall)/(Percision + Recall)
AUC represents the degree or measure of separability that is how much 
the model is capable of differentiating between the classes. 
AUC=  1/2  .(Sensitivity+Specificity)                (Itoo et al., 2021).

 In this article, we used the online Google Colab framework, an ex-
cellent, easy, and fast environment for Python 3 coders to implement ML 
algorithms. 

Results

Table 4 presents the performance metrics comparison for the six es-
tablished ML models in the testing phase. The SVM algorithm gained the 
highest accuracy (74%), followed by LR and DT, which both displayed a 
73% accuracy rate, RF (71% accuracy), and Gaussian NB (70% accuracy). 
However, out of all the models, the KNN model had the lowest accuracy 
(62%).

According to the precision results, SVM and LR showed relatively 
the same highest rates (70% and 69% respectively) followed by RF and 
DT (68% and 64% respectively), while NB and KNN came last with rates 

of 58% and 50%, respectively. Among all metrics, the recall showed the 
worst results (ranging from 47% to 55%) in the majority of algorithms. 
Except in NB, it scored 76% and 64% in DT. The results of the F1-score 
performance criterion fluctuated within a small range from 66% to 51% in 
all models. Finally, Gaussian NB and DT showed the highest AUC = 71%. 
From all the above, only the DT algorithm showed balanced results of 
all the performance metrics indicating that the results of DT were more 
reliable and accurate so it has been voted as the best ML algorithm for 
CM prediction. Figure 6 presents the AUC reported in each ROC curve for 
the six algorithms.

Hence DT was the best model, we plotted the feature importance 
shown in Figure 7, which is determined by how much each feature con-
tributes to reducing the uncertainty in the target variable. This is typi-
cally measured by the amount of reduction in the Gini impurity that is 
achieved by splitting on a particular feature. It appeared that the DIM was 
the most effective feature at reducing uncertainty in the target variable 
by about 47%, followed by the Age at last season sharing by 30%, 17% 
by the lactation order, and 3% for both 305 ME and DMY features so that 
they are considered the most important features by the DT model.

Figure 8 presents the DT graph which in general consists of 7 internal 
nodes (the first starting root node and 6 other child nodes) and 8 leaf 
nodes. Each box in the tree represents a node and it consists of the value 
of the split feature, the value of gini impurity before the split, the number 
of samples before the split, the values of classes after samples split, and 
the majority class. For example, at the root node if DIM is equal to or less 
than a standardized value of 0.393 this means that out of 3276 samples, 
2029 samples would fall in the mastitis category and the other samples 
would continue to split regarding other features, and so on till reaching 
one of the final decisions ( Mastitis or Healthy) at the leaf nodes.

Actual classes
Predicted classes

Negative Positive

Negative TTN TFP

Positive TFN TTP

Table 3. Confusion Matrix.

TTN: Total true negatives; TFP: Total false positives; TFN: Total false negatives; TTP: 
Total true positives.

Algorithms Accuracy Precision Recall F1 score AUC

SVM 0.74 0.7 0.54 0.61 0.70

LR 0.73 0.69 0.55 0.61 0.70

Gaussian NB 0.7 0.58 0.76 0.66 0.71

KNN 0.62 0.5 0.53 0.51 0.6

DT 0.73 0.64 0.64 0.64 0.71

RF 0.71 0.68 0.47 0.56 0.67

Table 4. The models’ performance metrics of the test dataset.

AUC: Area under the ROC curve; SVM: Support vector machine; LR: Logistic regression, 
Gaussian NB: Gaussian Naïve Bayes; KNN: K-Nearest Neighbor; DT: Decision tree; RF: 
Random forest.

Fig. 6. Comparing Receiver Operating Characteristic (ROC) curves of six ML methods 
[Support Vector Machine (SVM), Logistic Regression (LR), Gaussian Naïve Bayes (NB), 
K-Nearest Neighbors (kNN), Decision Tree (DT), and Random Forest (RF)] run on the test 
set, in the prediction of CM of Holstein Friesian dairy cows. In each plot, the area under the 
curve (AUC) was reported.

Fig. 7.  Features importance plot of the Decision tree algorithm.
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Discussion

This article, up to our knowledge,  is the first study in Egypt, that was 
established for CM prediction using a newly introduced domain of ML 
and depending on the AMS software data. The main aim is to maximize 
the benefit from the every day recorded dairy data in the decision-mak-
ing process, especially regarding animal health and welfare. We used 
15 features of milk production parameters and health records that have 
been mentioned before. But none of them was SCC, EC, or pH as the par-
ticipating Egyptian farm follows the routine of once a month screening 
the SCC for the entire herd, which makes SCC and the other 2 parameters 
not available for us for CM prediction.  We tried to optimize the perfor-
mance of the studied ML models. All data pre-processing (outliers detec-
tion and transformation, data standardization, and Autoencoder feature 
selection) and model tunning (10-fold CV and grid search) procedures 
were practiced efficiently and many train/test datasets splits were tried 
starting from 70%/30% train/test split up to 90%/10% train/test split. 

The effectiveness of six of the ML models was compared. The accu-
racy of all models ranged from 62% to 74%  and the AUC results ranged 
from 60% to 71%. We computed 5 different performance metrics for each 
algorithm but the final optimal algorithm was selected depending on 
AUC, as AUC is preferred over accuracy as it takes into account both the 
TPR and FPR of the model across different cut-off thresholds of the ROC 
curve (Ling et al., 2003). The greater the AUC, the better the accuracy, and 
0.7 – 0.9 AUC indicated moderate accuracy (Akobeng, 2007). The DT and 
Gaussian NB showed the highest AUC of 71%, but regarding the other 4 
metrics the DT was the best sustainable model so it is considered the best 
optimal CM predictive ML model of our study.

Regarding the results of the DT variable importance, DIM, age at 
the last season, lactation order, 305ME, and DMY were found to be the 
most important and indicative features for CM prediction. Consistent with 
these findings, Fadul-Pacheco et al. (2021) found that DIM, lactation, milk 
yield (MY), EC, and age of cow at 1st lactation were the features of impor-
tance for both 72% and 68% AUC respectively RF and Extreme Gradient 
Boosting algorithms built for CM detection on the long-term while, the 
disease events of ( retained placenta, abortion, metritis, ketosis, and pre-
vious CM) were of no importance and Luo et al. (2023) also got a 98% 
accurate DT CM predictive model with important indicative features of 
standard deviation and mean MY, lactation days, EC, and lying time. 

Regarding DIM which showed the highest importance score, Faris et 
al. (2021) revealed that the lactation stage was a significant risk factor for 
CM and the prevalence of CM during the early DIM (1-90 days) was high-
er than in the mid-stage (91-180 days) and the late stage (> 180 days). 
Also, Koeck et al. (2012) stated that the majority of CM cases were during 
the first month of lactation by a ratio of 32.7%. Such results might be due 
to the stress of peak milk production during the early stage of lactation 
(Chegini et al., 2016) or due to the diminished antioxidant defense mech-
anism and higher oxidative stress as a result of increased lipid peroxi-
dase wastes due to the high demand during the early DIM (Sharma et al., 
2011). Another explanation, this might be due to the delayed diapedesis 
of the neutrophils into the udder cells making them more sensitive to 
microbiological agents (Boujenane et al., 2015).

The age of the animal at the last season, when we obtained data, 
was the second important variable in the DT model. As the cow ages and 
increases the lactation times, the teat canal becomes dilated and partially 
opened permanently making it highly susceptible to catching infection 
from the external environment (Shittu et al., 2012).

The third indicative feature was the lactation order which in other 
words intended as parity. The CM cases showed a higher mean of lacta-
tion order than the healthy cases this was similar to the finding of Nakov 
et al. (2014). They reported that as the number of parties increases, the 
risk of CM increases.

The final features of importance were the DMY and 305 ME which 
showed the same score of importance and both revealed lower mean 
values (26.6 kg and 10673.5kg respectively) in Mastitic cases than in 
non-mastitic ones (31.5 kg and 11184.1 kg respectively). The mixed lin-
ear regression model revealed a negative correlation (P<0.001) between 
the total score of the four udder quarters inflammation and total milk 
production (Wahyu Harjanti and Sambodho, 2020). Also,  Adriaens et al. 
(2021) emphasized the fact that CM can significantly cause a reduction in 
milk production by more than 100 kg.

Conclusion

DT algorithm is the best model for a moderate performance of 71% 
for the AUC under the ROC curve in CM prediction under our data con-
ditions. This study emphasized that it is important to integrate ML data 
analysis in dairy farms to maximize the benefits of AMS and sensor data. 
This may have a positive impact on early CM detection and prevention 
improving animal health and welfare and maintaining the farm profit-
ability.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Adriaens, I., Van Den Brulle, I., Geerinckx, K., D’Anvers, L., De Vliegher, S., Aernouts, B., 2021. Milk 
losses linked to mastitis treatments at dairy farms with automatic milking systems. Preven-
tive Veterinary Medicine 194, 105420. 

Akobeng, A.K., 2007. Understanding diagnostic tests 3: Receiver operating characteristic curves. 
Acta Paediatrica, International Journal of Paediatrics 96, 644–647. 

Ali, N., Neagu, D., Trundle, P., 2019. Evaluation of k-nearest neighbour classifier performance for 
heterogeneous data sets. SN Applied Sciences 1, 1–15. 

Ardelean, E.R., Coporîie, A., Ichim, A.M., Dînşoreanu, M., Mureşan, R.C., 2023. A study of autoen-
coders as a feature extraction technique for spike sorting. PLoS ONE 18, 1–29. 

Bausewein, M., Mansfeld, R., Doherr, M.G., Harms, J., Sorge, U.S., 2022. Sensitivity and Specificity 
for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. 
Animals 12, 1–18. 

Bender, R., 2009. Introduction to the use of regression models in epidemiology. Mukesh Verma 
(ed.), Methods in Molecular Biology, Cancer Epidemiology, Vol. 471© 2009 Humana Press, 
a part of Springer Science + Business Media, Totowa, NJ Cancer Epidemiology, pp. 179–195.

Bi, Q., Goodman, K.E., Kaminsky, J., Lessler, J., 2019. What is Machine Learning? A Primer for the 
Epidemiologist. American Journal of Epidemiology 188, 2222-2239. 

Boujenane, I., El Aimani, J., By, K., 2015. Incidence and occurrence time of clinical mastitis in Hol-
stein cows. Turkish Journal of Veterinary and Animal Sciences 39, 42–49. 

Charbuty, B., Abdulazeez, A., 2021. Classification Based on Decision Tree Algorithm for Machine 
Learning. Journal of Applied Science and Technology Trends 2, 20–28. 

Chegini, A., Hossein-Zadeh, N.G., Hosseini-Moghadam, H., Shadparvar, A.A., 2016. Estimation of 
genetic and environmental relationships between milk yield and different measures of mas-
titis and hyperkeratosis in Holstein cows. Acta Scientiarum - Animal Sciences 38, 191–196.

Cheng, W.N., Han, S.G., 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative 
treatments — A review. Asian-Australasian Journal of Animal Sciences 33, 1699–1713.

Cockburn, M., 2020. Review: Application and prospective discussion of machine learning for the 
management of dairy farms. Animals 10, 1–22. 

Dhoble, A.S., Ryan, K.T., Lahiri, P., Chen, M., Pang, X., Cardoso, F.C., Bhalerao, K.D., 2019. Cytometric 
fingerprinting and machine learning (CFML): A novel label-free, objective method for routine 
mastitis screening. Computers and Electronics in Agriculture 162, 505–513.

Dong, B., Wang, X., Cao, Q., 2022. Performance Prediction of Listed Companies in Smart Health-
care Industry: Based on Machine Learning Algorithms. Journal of Healthcare Engineering 
2022, 1–7.

Fadul-Pacheco, L., Delgado, H., Cabrera, V.E., 2021. Exploring machine learning algorithms for early 
prediction of clinical mastitis. International Dairy Journal 119, 105051. 

Faris, D., El-Bayoumi, K., El-Taranany, M., Abdel-Hamed, A., Kamel, E., 2021. Prevalence and Risk 
Factors of Clinical Mastitis in Holstein Cows under Subtropical Egyptian Conditions. Benha 
Veterinary Medical Journal 41, 19–23. 

Fatima, M., Pasha, M., 2017. Survey of Machine Learning Algorithms for Disease Diagnostic. Jour-
nal of Intelligent Learning Systems and Applications 9, 1–16. 

Ghafoor, N.A., Sitkowska, B., 2021. MasPA: A Machine Learning Application to Predict Risk of Mas-
titis in Cattle from AMS Sensor Data. AgriEngineering 3, 575–583. 

Gokul Krishna, R., Periyasamy, S.V., Roshan Khan, S.B., Mohan Raj, T., 2023. Exploring the Potential 
of Machine Learning for Early Cattle Disease Diagnosis. 2023 5th International Conference on 
Inventive Research in Computing Applications (ICIRCA), pp. 853–857.

Han, J., Kamber, M., Pei, J., 2012. Data Preprocessing. In: Data Mining. pp. 83–124. 
Hogeveen, H., Steeneveld, W., Wolf, C.A., 2019. Production Diseases Reduce the Efficiency of Dairy 

Production: A Review of the Results, Methods, and Approaches Regarding the Economics of 
Mastitis. Annual Review of Resource Economics 11, 289–312.

Hossain, M.E., Kabir, M.A., Zheng, L., Swain, D.L., McGrath, S., Medway, J., 2022. A systematic review 
of machine learning techniques for cattle identification: Datasets, methods and future direc-
tions. Artificial Intelligence in Agriculture 6, 138–155. 

Iliou, T., Anagnostopoulos, C.N., Nerantzaki, M., Anastassopoulos, G., 2015. A Novel Machine 
Learning Data Preprocessing Method for Enhancing Classification Algorithms Performance. 
Proceedings of the 16th International Conference on Engineering Applications of Neural 
Networks (INNS) 2015, 1–5. 

Itoo, F., Meenakshi, Singh, S., 2021. Comparison and analysis of logistic regression, Naïve Bayes 
and KNN machine learning algorithms for credit card fraud detection. International Journal 
of Information Technology (Singapore) 13,1503–1511. 

Keceli, A.S., Catal, C., Kaya, A., Tekinerdogan, B., 2020. Development of a recurrent neural net-
works-based calving prediction model using activity and behavioral data. Computers and 
Electronics in Agriculture 170, 105285.

King, M.T.M., LeBlanc, S.J., Pajor, E.A., Wright, T.C., DeVries, T.J., 2018. Behavior and productivity of 
cows milked in automated systems before diagnosis of health disorders in early lactation. 

Fig. 8. The Decision tree graph.

D.N. Faris et al. /Journal of Advanced Veterinary Research (2024) Volume 14, Issue 6, 975-981

980



Journal of Dairy Science 101, 4343–4356. 
Klusowski, J.M., 2018. Complete Analysis of a Random Forest Model. Journal of Machine Learning 

Research,13, 1063–1095.
Koeck, A., Miglior, F., Kelton, D.F., Schenkel, F.S., 2012. Alternative somatic cell count traits to 

improve mastitis resistance in Canadian Holsteins. Journal of Dairy Science 95, 432–439. 
Kullarni, V.Y., Sinha, P.K., 2013. Random Forest Classifier: A Survey and Future Research Directions. 

International Journal of Advanced Computing 36, 1144–1156.
Lee, E.P.F., Lozeille, J., SoldÃ¡n, P., Daire, S.E., Dyke, J.M., Wright, T.G., 2001. An empirical study of 

the naive Bayes classifier. Physical Chemistry Chemical Physics 3, 
Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., Zhang, C., 2021. CleanML: A study for evaluating the 

impact of data cleaning on ml classification tasks. Proceedings - International Conference on 
Data Engineering 2021, 13–24. 

Ling, C.X., Huang, J., Zhang, H., 2003. AUC: A Better Measure than Accuracy in Comparing Learn-
ing Algorithms. In Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics 6852, 329–341. 

Luo, W., Dong, Q., Feng, Y., 2023. Risk prediction model of clinical mastitis in lactating dairy cows 
based on machine learning algorithms. Preventive Veterinary Medicine 221, 106059. 

Mathkunti, N.M., Rangaswamy, S., 2020. Machine Learning Techniques to Identify Dementia. SN 
Computer Science 1, 1–6.

Nakov, D., Hristov, S., Andonov, S., Trajchev, M., 2014. Udder-related risk factors for clinical mastitis 
in dairy cows. Veterinarski Arhiv 84, 111–127.

Nusinovici, S., Tham, Y.C., Chak Yan, M.Y., Wei Ting, D.S., Li, J., Sabanayagam, C., Wong, T. Y., Cheng, 
C.Y., 2020. Logistic regression was as good as machine learning for predicting major chronic 
diseases. Journal of Clinical Epidemiology 122, 56–69. 

Ruegg, P.L., 2017. A 100-Year Review: Mastitis detection, management, and prevention. Journal of 
Dairy Science 100, 10381–10397. 

Schölkopf, B., 2003. An Introduction to Support Vector Machines. Recent Advances and Trends in 
Nonparametric Statistics 2003,  3–17. 

Sharma, N., Singh, N.K., Singh, O.P., Pandey, V., Verma, P.K., 2011. Oxidative stress and antioxidant 
status during transition period in dairy cows. Asian-Australasian Journal of Animal Sciences 
24, 479–484. 

Shittu, A., Abdullahi, J., Jibril, A., Mohammed, A.A., Fasina, F.O., 2012. Sub-clinical mastitis and 
associated risk factors on lactating cows in the Savannah Region of Nigeria. BMC Veterinary 
Research, 8, 134.

Sonia Singh, P.G., 2014. Comparative Study ID3,CART AND C4.5 Decision Tree Algorithm. Interna-
tional Journal of Advanced Information Science and Technology 27, 98.

Task, C., 2014. Chapter 7; k-Nearest Neighbor Algorithm. pp. 149–164.
Vik, J., Stræte, E.P., Hansen, B.G., Nærland, T., 2019. The political robot – The structural conse-

quences of automated milking systems (AMS) in Norway. NJAS - Wageningen Journal of 
Life Sciences 90–91, 1-9. 

Volkmann, N., Kulig, B., Hoppe, S., Stracke, J., Hensel, O., Kemper, N., 2021. On-farm detection of 
claw lesions in dairy cows based on acoustic analyses and machine learning. Journal of Dairy 
Science 104, 5921–5931.

Wahyu Harjanti, D., Sambodho, P., 2020. Effects of mastitis on milk production and composition in 
dairy cows. IOP Conference Series: Earth and Environmental Science 518, 012032. 

Zhou, X., Xu, C., Wang, H., Xu, W., Zhao, Z., Chen, M., Jia, B., Huang, B., 2022. The Early Prediction of 
Common Disorders in Dairy Cows Monitored by Automatic Systems with Machine Learning 
Algorithms. Animals 12, 1251.

D.N. Faris et al. /Journal of Advanced Veterinary Research (2024) Volume 14, Issue 6, 975-981

981


