
Introduction

TThe term Bayesian in the Bayesian statistics was

given in honor of Thomas Bayes (1702–1761), who

proved a special case of what is now called as

Bayes therom.  After the discovery of Bayes the-

orm, Pierre-Simon Laplace (1749–1827) intro-

duced a general version of the theorem and used it

to approach problems in celestial mechanics, med-

ical statistics, reliability and jurisprudence. Laplace

also introduced primitive version of conjugate pri-

ors and the theorem of Von Mises and Bernstein,

according to which the posteriors corresponding to

initially differing priors ultimately agree, as the

number of observations increases. This was a great

leap in the statistical approach in the solution of the

problem especially when the problem of uncer-

tainty is involved. Usually, mathematical statisti-

cians use two major paradigms- one is

conventional (frequentist) and other is Bayesian ap-

proach for data analysis. Bayesian approach pro-

vides a complete paradigm for both statistical

inference and decision making under uncertainty.

Bayesian methods may be derived from a self-evi-

dent system, and hence provide a general, coherent

methodology. It contains, at particular cases, many

of the more often used frequentist procedures,

solves many of the difficulties faced by the con-

ventional statistical methods and extends the appli-

cability of statistical methods. There are various

fields worldwide where Bayesian statistics is used

successfully for better prediction of the effects with

more precision such as prediction of monsoon, pre-

diction of chances of winning in the unlikely events

in the sports and so on.

The most important limitation for more exten-

sive implementation of Bayesian approach in day

to day statistics is that obtaining the posterior dis-

tribution often requires the integration of high-di-

mensional functions. Bayesian calculations almost

require integration over uncertain parameters. This

integration often has no analytical solution and in-

stead requires computationally intensive numerical

integration such as Markov chain Monte Carlo

method. Until the advent of computer, Bayesian ap-

proach was often not flexible. Secondly, Bayesian

methods require specifying prior probability distri-

butions, which are often unknown. Bayesian statis-
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tics generally assumes so called ‘uninformative’

priors in such cases. Though Bayes therom is triv-

ially true for random variables X and Y, it is not

clear that parameters or hypothesis should be

treated as random variables. 

Mathematical computation difficulties such as

integration of high dimensional functions and over

uncertain parameters  were solved by several ap-

proaches which could bypass this tedious process

reported in the literature by Smith (1991), Evans

and Swartz (1995) and Tanner (1996). One of the

most important approaches is Markov Chain Monte

Carlo (MCMC) methods, which attempt to simu-

late direct draws from some complex distribution

of interest. Here one uses the previous sample val-

ues to randomly generate the next sample value,

generating a Markov chain (as the transition prob-

abilities between sample values are only a function

of the most recent sample value). Gelfand and

Smith (1990) realized that one particular MCMC

method, the Gibbs sampler, is extremely exten-

sively applicable to a broad class of Bayesian prob-

lems. This thinking was new and revolutionized the

field of Bayesian statistics completely thus initiat-

ing a major increase in the application of Bayesian

analysis and the efforts are being still continued for

its widespread application. 

It was way back around 1950’s when the

MCMC methods’ seeds were sown through the ori-

gin of the Metropolis algorithm (Metropolis and

Ulam, 1949 and Metropolis et al., 1953). In the

year of 1984, the field of image processing gave

rise to the most important method of MCMC i.e.

the Gibbs sampler (Geman and Geman, 1984). It is

therefore important to see that this field is not as

new as it seems to be. It is also ironic to see that in

spite of many efforts by research workers, this

method neither was not quickly and widely ac-

cepted, nor is it used today as extensively as it

should be looking towards the potential of the

method. The transformation in the field of

Bayesian statistics was use of computer packages

and programs for using the Bayesian approaches.

Today many softwares such as SAS, WINBUGS,

OpenBUGS are used for the general purpose-

Bayesian analysis of the data (SAS 2006, Thomas

et al., 2006, Lunn et al., 2000). Application of

Bayesian approach in statistical design of the solu-

tions for problems in breeding was a novel idea.

Harville (1977) offered a Bayesian interpretation

of REML successfully for the first time. 

Application in Animal Breeding

Taking lessons from the history and the background

of the Bayesian statistics and the initiation of this

method in the application for analysis of animal

breeding problems we turn towards its practical ap-

plication in the field. One of the most important

problems in the breeding data analysis is estimation

of variance components. In the past, ANOVA was

used for this purpose. Henderson (1953) developed

analogue techniques for unbalanced data. Because

of the use of vector notation, those techniques be-

came popular for use in computer programmes

(Harvey, 1977 and SAS, loc. cit). In essence, tech-

niques are the same as in balanced data, using an

ANOVA table with the sum of squares for the dif-

ferent effects and their expectations. Maximum

likelihood approach was used and still being used

for computation of the genetic parameters which

was surpassed by the Residual Maximum Likeli-

hood (REML) and upgraded to Derivative Free

(DF) REML. However, these procedures are basi-

cally meant for the data which is linear and nor-

mally distributed. Many a times we come across

several parameters which are not normally distrib-

uted and are basically categorical or binary in na-

ture. Many a times they follow a binomial

distribution. Bayesian approach is better way for

the data which is categorical, not normally distrib-

uted and also for the normally distributed data.

Usually MCMC Gibbs sampling procedure is fol-

lowed for the data analysis in animal breeding

while applying Bayes statistics. In the MCMC

Gibbs sampling, we would obtain a point estimate

of genetic variance and a single measure of uncer-

tainty, which, technically speaking is only mean-

ingful in large samples and if the data are normally

distributed. Estimation of responses can be derived

from an animal model, but their properties are un-

known. An alternative is to adopt the Bayesian ap-

proach. The Bayesian approach resides in arriving

at the marginal posterior distribution of the un-

known of interest. This distribution provides an

exact account of the uncertainty about the unknown

parameter. Although Bayesian methods were theo-

retically powerful, they usually led to formula in

which multiple integrals had to be solved in order

to obtain the marginal posterior distributions used

for a complete Bayesian inference. Because these

integrals could not be calculated, even using ap-

proximate methods, Bayesian inference was based
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on the mode of posterior distributions, often giving

results rather similar to the REML approaches.

However, till today people do not readily change

to Bayesians from frequentists due to many rea-

sons.

The frequentists’ way of inference is based on

how a large number of estimates would be distrib-

uted around the true value if a large number of sam-

ples were taken, whereas Bayesians examine the

probability distribution of the true value, given the

data. For a frequentist, the true value is usually

fixed and the sample is variable, whereas for a

Bayesian the sample is fixed and the parameter of

interest is a random variable. Some statistical con-

cepts currently used in animal breeding do not have

a Bayesian interpretation, for example, “bias” and

the difference between fixed and random effects.

In a Bayesian context “bias” does not exist, be-

cause conceptual repetitions of the experiment are

not considered. Also, all effects are random be-

cause the Bayesian way of expressing uncertainty

is to draw density functions of all unknowns, and

thus all unknowns are considered random vari-

ables. This can be surprising to an animal breeder

working with BLUP (Henderson, 1975) or REML

(Patterson and Thompson, 1971), but the property

of unbiasedness has been discussed even within the

frequentist methods. Inferences obtained from both

schools are not always coincident, particularly for

small samples and when the Bayesian analysis uses

prior information.  Some problems that have no so-

lution (or have only a rough approximation) in the

frequentist methods can be solved unambiguously

with the Bayesian approach. There are many cases

in animal breeding in which the frequentist ap-

proach gives an accurate and rapid answer and

Bayesian methods are not needed (BLUP). Prob-

lems faced by frequentists are difficulties with ob-

taining multivariate REML estimation of the

variance components when the database is large,

and with the problem of taking into account the

error of estimation of variance components in the

prediction of breeding values.

Estimation of different variance components

(VC) from the total phenotypic variance in a trait

is very important in animal breeding. Many work-

ers in the past have tried to find out various ap-

proaches for estimating the VC through statistical

techniques. According to Henderson (1975) and

Schaeffer (1984), accurate estimates of VC are im-

portant because prediction of error variances for

predicted random effects (e.g., breeding values) in-

creases as differences between estimated and true

values of VC increase. These days REML is con-

sidered as the method of choice for estimating VC

(Meyer, 1990). The use of REML and DF-REML

in animal breeding has increased significantly as

various softwares for REML procedure were made

available by research workers. Some examples of

these programs are DFREML 3.0.beta (Meyer,

1998), MTDFREML (Boldman et al., 1995), VCE

(Groeneveld, 1994) and Wombat (Meyer, 2010).

The use of Bayesian analysis in animal breeding

did not have many takers in the past research com-

munity. A bold effort by Van Tassell and Van Vleck

in 1995 for constructing a program for variance

component estimation by Gibbs sampling resulted

in the formation of multiple-trait Gibbs sampler for

animal models (MTGSAM) programs, which are

developed to implement the Gibbs sampling (GS)

algorithm for Bayesian analysis of a broad range

of animal models (Van Tassell and Van Vleck, loc.

cit). These programs expand the methods available

for statistical analysis of animal breeding data. 

The number of minimum iterations which are re-

quired as the burn in and the total number of itera-

tions for estimation of the correct means of

posterior distributions are very important while

performing the Gibbs sampling analysis in animal

breeding.  Raftery and Lewis made efforts success-

fully to put forth the idea in the form of an algo-

rithm which was converted to the Fortran program

(Gibbsit) for calculation of burn in and minimum

number of iterations required for the correct esti-

mates of posterior means in the Gibbs sampling

(Raftery and Lewis, 1996).

Research Experiences

Using Bayesian method, we can integrate over

varying degree of uncertainty in the different aspect

of the analysis. It is useful in the post genomic

world of analyzing large, noisy biological data sets.

Bayesian methods do not require any particular

regularity conditions on the probability model, do

not depend on the existence of sufficient statistics

of finite dimension, do not rely on asymptotic re-

lations and do not require the derivation of any

sampling distribution. 

Van Tassell and Van Vleck (1996) have de-

scribed in their paper that if the Gibbs sampling is

used giving flat priors and compared with the
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REML procedure estimates then the outputs are

similar to each other. However, they may vary a lit-

tle and non-significantly if priors are used in the

Gibbs sampling procedure. They used MTGSAM

computer program for the computation of genetic

parameters. This software is a leap ahead in the

analysis of animal breeding data by the Bayesian

approach. A further attempt to use another software

for animal breeding data was done by Damgaard

(2007). He concluded in his paper that Winbugs

can be used to make inferences in small-sized,

quantitative, genetic data sets applying a wide

range of animal models that are not yet standard in

the animal breeding literature. However, not many

people are using the Winbugs for genetic data

analysis, but its use can be explored in the future.

The use of Gibbs sampler for estimation of genetic

parameter was done in Jack Russell Terrier (JRT)

dog by Famula et al., (2007). The estimation of her-

itability of deafness in the JRT was 0.22 when deaf-

ness was considered a binary (normal/deaf) trait

and 0.31 when deafness was considered a three-cat-

egory trait (normal/unilateral/bilateral deafness).

The influence of coat colour in the incidence of

JRT deafness was statistically significant, indicat-

ing that dogs with more white are more likely to be

deaf. Complex segregation analysis revealed a

model of a single locus with a large effect on the

binary measure of hearing loss is not supported.

Stock et al. (2007) used Gibbs sampling in horse

population. Their results showed that bias of heri-

tability estimates was -6% to +6% for the continu-

ous trait, -6% to +10% for the binary traits of

moderate heritability, and -21% to +25% for the bi-

nary traits of low heritability. Additive genetic cor-

relations were mostly underestimated between the

continuous trait and binary traits of low heritability,

under- or overestimated between the continuous

trait and binary traits of moderate heritability and

overestimated between two binary traits. Use of

trait information on two subsequent generations of

animals increased effective sample size (ESS) and

reduced bias of parameter estimates more than

mere increase of the number of informative ani-

mals from one generation. Consideration of geno-

type information as a fixed effect in the model

resulted in overestimation of polygenic heritability

of the QTL trait, but increased accuracy of esti-

mated additive genetic correlations of the QTL

trait. Yague et al., (2009) estimated genetic param-

eters for days to first insemination (DFI), days from

first insemination to conception (FIC), number of

inseminations per conception (IN), days open

(DO), gestation length (GL) and calving interval

(CI) by multitrait Bayesian procedures. In his lit-

erature, estimates of the mean of posterior distri-

bution of the heritability of DFI, FIC, IN, DO, GL

and CI were 0.050, 0.078, 0.071, 0.053, 0.037 and

0.085 respectively and the corresponding estimates

for repeatability of these traits were 0.116, 0.129,

0.147, 0.138, 0.082 and 0.132 respectively. No sig-

nificant genetic correlations associated to DFI or

GL were found. However, genetic correlations be-

tween the other four analyzed traits were high and

significant. Genetic correlations between FIC and

IN, DO and CI were similar and higher than 0.85.

Genetic correlations of IN–DO and IN–CI were

over 0.65. The highest genetic correlation was es-

timated for the pair DO–CI (0.992) that can be con-

sidered the same trait in genetic terms. Details of

this study are given here to give an importance of

the Gibbs sampling as the method of choice for re-

cent trends in the genetic parameter estimation. 

In many problems of statistical inference, ob-

jective and universally agreed contextual informa-

tion is available on the parameter values. This

information is usually very difficult to handle

within the framework of conventional statistics, but

it is easily incorporated into a Bayesian analysis by

simply restricting the prior distribution to the class

of priors which are compatible with such informa-

tion. Animal breeding data which is categorical can

be very well evaluated by using the Gibbs sampling

procedure. In India, there are no good reports of

use of Gibbs sampling for analysis of the animal

breeding data till now. With the advent of the com-

puter packages such as Gibbsit, MTGSAM, WIN-

BUGS, the computation part is made easy.

Breeders with access to the scientific records for

the breeding data can give a brave attempt in this

direction, which may lead to a new era of breeding

data analysis in our country. 
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