
Introduction

There is significant interest and investment in information
that can be derived from new technologies and data to sup-
port enhanced monitoring, measurement, and management
of farming systems for more sustainable production (Bell and
Comber, 2020). Studies have shown that by the year 2067
dairy farms in developing countries will be modernized and
integrated sensors, robotics, and automated systems will re-
place much of the manual labour on farms, (Britt et al., 2018).
The use of digital technologies forms the basis for successful
large scale implementation of precision livestock farming in
practice (Groher et al., 2020). With digital technologies, farm-
ers are not only able to monitor large animal populations for
health and welfare, but also detect issues with individual ani-
mals in a timely manner, and also anticipate issues before they
occur, based on previous data (Benjamin and Yik, 2019). Cur-
rently, Artificial intelligence and machine learning are being
used to improve the prediction of complex events such as
calving time (Borchers et al., 2017). Accelerometers are pro-

viding a useful tool to help farmers to identify oestrus activity
in cows (Mayo et al., 2019). An understanding of the new dig-
ital information is important for effective implementation,
from support, for farmers to data analytics and the linkage ac-
tors (Bell and Comber, 2020). Innovation needs to continue if
we are to supply safe and nutritious food to a population that
will grow to over 9 billion by 2050 and on a planet where re-
sources are becoming scarcer (Shepherd et al., 2020).

Traditionally, livestock management decisions have been
based on almost entirely on observations, judgement, and ex-
perience of the farmer (Norton et al. 2019; Werkheiser 2020),
this subjective technique scoring systems lack reliability. The
usefulness of any assessment method is determined by its va-
lidity, reliability, and sensitivity (Flower and Weary, 2006). High
intra assessor and inter assessor variability in subjective as-
sessments have been reported (O’Callaghan et al., 2003;
Flower and Weary, 2006). Objective measurement tools like
sensors focus on most directly on measurable indicators of a
condition rather than proxy measures (Mottram, 2016). In-
creasing standards for animal health and welfare has led to
considerable research activity into ways to monitor animals in
a continuous, dynamic and real-time manner on farm (Norton
et al., 2019; Neethirajan and Kemp, 2021). This has facilitated
phenotyping of a wide range of functional traits, particularly
(fertility, legs/feet, udder, birth, feed utilization efficiency, be-
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haviour, milk composition, body composition) that can be
used for management and genetic selection purposes, as well
as parameters of public interest (Egger-Danner et al., 2015).
Precision livestock farming (PLF) equips farmer with more ob-
jective information about the animal to make more informed
choices about the sustainability of their production systems
(Norton et al., 2019).

Digital applications have the potential to dramatically
change the way knowledge is processed, communicated, ac-
cessed, and utilised as farming processes become increasingly
data driven and data enabled (Ingram and Maye, 2020). Com-
pared with ruminant species, digital technologies are widely
used in the dairy sector (Groher et al., 2020). The authors ob-
served that, easy to use sensors and measuring devices for ex-
ample, integrated in the milking parlour are wider spread than
data processing technologies. The current study aims at as-
sessing digital technologies for improved animal monitoring
and welfare in dairy herds in the tropics. Such technologies
have the potential to allow welfare and health issues to be de-
tected quickly for more animals compared to more manual
methods currently used (Bell and Tzimiropoulos, 2018). Some
of the main health and fertility problems associated with dairy
cows are discussed below.

Body condition

The body condition score (BCS) of dairy cattle is an assess-
ment of the proportion of body fat that it possesses, and it is
recognised by animal scientists and producers as being an im-
portant factor in dairy cattle management (Roche et al., 2009).
The most widely used and traditional method for BCS is man-
ual scoring of the amount of body fat reserves associated with
a live animal at a given time (Edmonson et al., 1989; Roche et
al., 2009). The BCS is assigned by trained assessors using pre-
defined scoring protocol consisting of a 5 – point scoring sys-
tem with 9 levels of fatness from lean to obese (Edmonson et
al., 1989). Given the importance of body condition at different
stages of production and their physiological target, a reliable
phenotypic measure of BCS is extremely beneficial (Bell et al.,
2018). Calving BCS is probably the most influential time point
in the lactation calendar, as it affects early lactation dry matter
intake, post calving BCS loss, milk yield cow immunity and, al-
though it does not directly affect pregnancy rate, it does in-
fluence reproduction through its effect on nadir BCS and BCS
loss (Roche et al., 2009). Cows with a high or low BCS have as-
sociated with health risks and low reproductive performances
(Roche et al., 2009). Therefore, monitoring individual cow body
fat and maintaining adequate body condition is essential to
maintain a productive animal that has appropriate nutrition
and fertility, whilst also producing acceptable amount of milk
(Bell et al., 2018). 

Ultrasonography and machine vision technology are the
alternatives to manual scoring of BCS. Ultrasonography meas-
ures subcutaneous fat thickness (Domecq et al., 1995). This
technology is labour intensive and requires handled devices
(Song et al., 2019). Machine vision technology has been used
in automated body condition score classification of dairy cows
(Bewley et al., 2008). Recently improvement on automated BCS
classification has been done by including multiple body con-
dition related features extracted from 3 viewpoints in 8 body
regions (Song et al., 2019). The body images of cows are
recorded using 3 – dimensional cameras positioned to view
the cow from top, right side, and rear. Each image is then au-
tomatically processed to identify anatomical landmarks, the
bony prominences and body surface.  Around these anatom-
ical landmarks, the bony prominences are quantified to de-
scribe 8 body condition related features. They concluded that
this study increased the sensitivity of BCS classification com-

pared with that reported for current machine vision-based
body condition scoring methods. 

Bell et al. (2018) compared three different methods of
measuring the body condition of dairy cows using an ultra-
sound scanner, manual observation, and still digital image of
the cow. They found out that across all cows, the manual BCS
produced the highest average BCS of 2.76, compared to 2.41
for digital BCS and 2.10 for ultrasound BCS. The ultrasound
and digital methods were below the recommended “ideal”
range of 2.5 -3.0 (Chagas et al., 2007). On average, the manual
BCS over predicted body condition when compared to ultra-
sound measurements by 31%. They concluded that digital BCS
can provide a more accurate assessment of cow body fat than
manual BCS observations, with the added benefit of more au-
tomated and frequent monitoring potentially improving the
welfare and sustainability of high production systems.

Lameness and mobility

Lameness or abnormal gait is a response to pain caused
by a range of pathologies (Van Nuffel et al., 2015; Alsaaod et
al., 2019). Literature indicates that timely detection of lame-
ness is a big problem in the dairy industry because cattle tend
to show little overt behaviour until injuries are advanced
(Taneja et al., 2020). The most common method of lameness
detection is ad hoc observation during other activities as herd-
ing (Flower and Weary, 2006; Fabian et al., 2014). However, Ad
hoc detection is ineffective at detecting mild and even mod-
erate lameness and this underscores the need for measure-
ment (O’Leary et al., 2020). The current gold standard for the
detection of lameness in dairy cows is the clinical observation
by a trained professional (Alsaaod et al., 2017). Studies on va-
lidity of gait scoring systems report poor relationship between
scores and measures of hoof and leg injuries or disease
(Flower and Weary, 2006). A lack of agreement between ob-
servers  has also been reported; O’Callaghan et al. (2003),
found only 37% agreement in the score of 2 observers, and
Winckler and Willen (2001) found 68% agreement among
scores of 3 observers. The estimated cost of lameness varies
between cost and pathology (O’Leary et al., 2020). Dolecheck
and Bewley (2018), estimated the cost of a foot rot case at
$136 on the lower side and a sole ulcer case at $960 on the
higher side. The economic viability of lameness detection de-
pends on not just on low cost and high accuracy, but also on
willingness to promptly treat cow identified as lame (Van De
Gucht et al., 2017). 

Lame cows tend to lie down for longer and generally have
fewer but longer lying bouts, rumination and eating, activity
measurement via leg worn and neck worm accelerometers
(Thorup et al., 2015; Weigele et al., 2018). Alsaaod et al. (2017),
detected unilateral hind limb lameness and foot pathologies
in dairy cattle. They concluded that use of accelerometers with
a high sampling rate (400 Hz) at the level of the MT is a prom-
ising tool to indirectly measure the kinematic variables of the
lateral claw and to detect unilateral hind limb lameness and
hind limb pathologies in dairy cows and is highly accurate.
Flower and Weary (2006), split gait into six attributes: back
arch, head bob, tracking up, joint flexion, asymmetric gait, and
reluctance to bear weight and assessed using a continuous
100 –unit scales.

Mastitis

Observation of clots by use of a strip cup, swollen or
heated udders and behaviour change are the commonly used
methods for mastitis detection (Mottram, 2016). However, be-
cause large herd sizes, and the fact that the farmer cannot al-
ways be available to check the process visually, this has to be
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replaced by an automatic mastitis detection system which
measure certain attributes of milk for example electric con-
ductivity (EC), colour of milk, milk yield, and an algorithm that
transforms data into alerts (Mollenhorst et al., 2012). The EC
sensors incorporated in Automated Milking Systems (AMS)
can continuously measure EC during the milking process and
are termed “in line” as they monitor the level of ions in the
milk during the milking process, without requiring samples to
be collected and analysed (Khatun et al., 2017). Interest in
adoption of AMS have created the demand for reliable detec-
tion of mastitis due to the reduction in time required to iden-
tify mastitic cows that need veterinary intervention
(Mollenhorst et al., 2012). 

Previous methods have shown that the use of only (EC) in
different detection algorithms was unable to achieve the ISO
(2017) standard specificity (>70% and specificity (>99%) for
clinical mastitis detection (Khatun et al., 2017). Later, Khatun
et al. (2018) developed and tested multiple measurement ap-
proach or index for inline AMS sensors to detect clinical mas-
titis targeting >80% sensitivity and ≥99% specificity. They
reported that, best mastitis prediction was possible by incor-
porating 6 measurements: quarter level milk yield (MY; kg),
electrical conductivity (EC; Ms/cm), average milk flow rate (MF;
kg/min), occurrence of incompletely milked quarters in each
milking session (IM; yes or no), MY per hour (MYH; kg/h), and
EC per hour (ECH; Ms/cm/h) between successive milking ses-
sions. The model achieved 90% sensitivity and 91% specificity
and was able to detect clinical mastitis 1 -3 days before actual
diagnosis of clinical mastitis. 

Farmers on average prefer a clinical mastitis detection sys-
tem that produces a low number of false alerts, while alerting
in good time ad with emphasis on the more severe cases Mol-
lenhorst et al., 2012). Iraguha et al. (2017) tested the specificity
and sensitivity of four subclinical mastitis diagnostic tests (the
UdderCheck® a lactate dehydrogenase-based test, the Cali-
fornia Mastitis Test (CMT), Draminski® a conductivity-based
test and the PortaSCC® a portable somatic cell count test) on
crossbreed dairy cows using PortaSCC® as a reference. Sen-
sitivity and specificity were 88.46% and 86.17% (CMT), 78.5%
and 81.4% (Draminski®) and 64.00% and 78.95% (Ud-
derCheck®).

Fertility

Detection of oestrus is a key determinant of profitability
of dairy herds, but oestrus is increasingly difficult to observe
in the modern dairy cow with shorter duration and less intense
oestrus (Homer et al., 2013). Cow fertility is influenced most
by management. It is estimated that inaccurate oestrus detec-
tion and infertility costs the dairy industry $360 per missed
oestrus (Lucy, 2001; De Vries, 2006).  Studies have shown that
32% of oestrus in cows is not detected by herdsmen and be-
tween 5 and 21% of cows are inseminated at the wrong time
(Claus et al., 1983). Standing to be mounted is often construed
as the gold standard. A high level of success rate of up to 89%
in oestrus detection by experienced herdsmen has been re-
ported (Hempstalk et al., 2013). Automated technologies have
been developed to obviate the need for visual observation
(Homer et al., 2013). Cows in oestrus exhibit different behav-
ioural and hormonal signals which may be measured exter-
nally (Mottram, 2016). 

Milk temperature has been used as a technique of detect-
ing oestrus in cattle (Maatje et al., 1987) with a specificity and
sensitivity of 74% %. McArthur et al., 1992 studied the use of
milk temperature for detecting oestrus in dairy cattle. Meas-
urements were made in both experimental (well controlled)
and commercial conditions. Milk temperature was measured
twice daily during milking. Milk temperature increased by

0.4oC on the day of behavioural oestrus. On commercial farm,
milk temperature profiles were obtained for 18 postpartum
cows which exhibited a total of 34 periods of oestrus. From
their results, 50% true positives could be identified when 0.3oC
elevation in above average for the previous 5 days (morning
and afternoon profiles considered separately) and 81% false
positives. They concluded that the twice measurement of milk
temperature is not a reliable method for detecting oestrus in
cattle.

A decrease in vaginal temperature by 1.0 to 1.6oC  the day
before oestrus and a similar increase after the day of ovulation
has been reported (Wren et al., 1958; Redden et al.,1993).
Sakatani et al., 2016) compared the use of vaginal temperature
and pedometers in oestrus detection in Japanese black cows.
They observed that the oestrus detection of the pedometer
was lower in summer and lower than that obtained using vagi-
nal temperature. The study concluded that oestrus detection
using body temperature especially measurement of the vagi-
nal temperature could be effective throughout the year. Re-
cently Higaki et al. (2019), evaluated the effectiveness of
oestrus detection techniques based on continuous measure-
ment of vaginal temperature and conductivity with supervised
machine learning in cattle. They observed that detection
model with features from either temperature or conductivity
alone was not efficient. Best detection model was developed
from features from both temperature and conductivity. Of 17
estruses, 16 were detected, with 1 false positive when the best
model was used. Implying that oestrus can be detected real-
time by this technique.

Automated oestrus detection and pregnancy diagnosis

Use of direct measurable indicators of a condition rather
than proxy measures has been recommended (Mottram,
2016), for objectivity. Since the advent of cheap tri-axial ac-
celerometers and digital signal processor chips the collar can
detect oestrus, behaviour, lameness, location and with the col-
lection of audio data rumination and feeding activities (Mot-
tram, 2016). Quantifying behaviour and physiological variables
with automated oestrus detection improves oestrus detection
rates (Stevenson et al., 2014; Mayo et al., 2019), compared with
visual observation. In a study by Stevenson et al. (1996) to
compare oestrus detection by observation and radiotelemetry,
it was observed that visual observation failed to detect 11 of
41 heifers (37%) that were detected by the radio telemetric
device. The goal of continuous monitoring with automated
systems is to detect animals in oestrus to predict ovulation
time (Mayo et al., 2019). Predictors of ovulation time should
have high sensitivity (89%) for detecting behaviours by 18
hours before ovulation (Trimberger, 1948). Artificial Insemina-
tion based on detection of oestrus plays an important role in
overall reproductive management program on most dairies in
the United States (Caraviello et al., 2006). 

Rudimentary and invasive methods of pregnancy diagno-
sis like rectal palpation are too invasive. Ultrasound examina-
tion and endocrine testing are fairly less invasive and cause
no trauma. Long calving intervals is the cost of inadequacies
in flawed pregnancy diagnosis approaches. With PLF tech-
nologies, physiological and behavioural animal variables can
be continuously monitored non – invasively using image and
sound analysis from cameras and microphones respectively
(Norton et al., 2019).

Novel traits

Novel measurements such as rumination time, eating
time, lying behaviour, ultra-wide band technology to measure
mounting and standing to be mounted behaviour and infrared
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thermography to measure temperature are being studied to
further aid oestrus detection (Roelofs et al., 2004). A novel ap-
proach for detection of oestrus using ultra-wide band tech-
nology (UWB) was reported by Homer et al. (2013). The UWB
technology accurately detected 9 out of 10 cows in oestrus
and correctly confirmed all 6 cows not in oestrus. Ultra- wide
band technology provides acuminous method of detection,
operating 24 h per day, accurately detecting cows in oestrus
and reporting the optimal time for AI.

In a recent study by Mayo et al. (2019), Oestrus detection
by precision dairy monitoring technology (PDMT), an oestrus
behaviour scoring system, and by visual observation of stand-
ing oestrus were compared with reference (gold) standard.
Only 56% of cows that ovulated were observed standing by
visual observation. These points out challenges of silent ovu-
lation. In a review by Mottram (2016), it was argued that pe-
dometers are not capable of providing completely reliable
detection. However, monitoring the intensity of oestrus could
be used to predict super ovulatory response as well as embryo
quality in Holstein heifers (Madureira et al., 2020).

Freemartins

Freemartin is by definition, a genetically female foetus
masculinised in the presence of a male co-twin, giving rise to
a sterile heifer (Esteves et al., 2012). However, studies have
shown that about 10% of heterosexual twin females are not
sterile, develop correctly and can be considered for breeding
(Esteves et al., 2012; Qiu et al., 2018). Freemartinism is diag-
nosed by physical examination, external genitalia commonly
present enlarged clitoris, small vulva and a prominent, male
like tuft hair (ESteves et al., 2012). The general rule has been
that heifers born twin to a bull have to be considered sterile
and should be identified as early as possible. However, ambi-
guity in diagnosis of freemartins has been reported (Szczerbal
et al., 2021). According to Qiu et al. (2018), quantifying SRY
gene by qPCR is a better detection method for diagnosis of
freemartin in Holstein cattle as compared to qualitative de-
tection of SRY gene by PCR or quantitative detection of H-Y
antigen.

Using cytogenetic and molecular techniques, Kozubska-
Sobocin´ska et al. (2019) estimated the most precise and ef-
fective diagnostic method especially useful for identification
of freemartinism in young female calves. In that experiment
12.5% of the calves were found to be potentially fertile heifers
which can qualify for further breeding. They concluded that
precise and early identification of freemartinism can be the
basis for guideline and selection recommendations concern-
ing the reproductive performance of heifers born from het-
erosexual multiple pregnancies.

Birth

Up to one third of calves on farms are born following dys-
tocia and are at risk of increased disease and mortality (Barrier
et al., 2013). Ability to predict calving time would enable pro-
phylactic measures to adjust diets and management to reduce
problems (Mottram, 2016). Manual rectal palpation is one of
the methods used for predicting calving. It entails assessing
the position, size, and tone of the uterus, presence, and size
of placentomes and foetus, and size and feel of the middle
uterine arteries and comparing these with expected findings
for pregnancies of various ages (Riding et al., 2008). In a study
by Matthews and Morton (2012) calving dates were predicted
with modest accuracy using rectal palpation assisted by arti-
ficial insemination dates; 81% of study cows calved within 10
days of their predicted calving date. Accuracy was high when
were between 8 – 14 compared with 7 or 15, weeks of gesta-

tion with 87% of these cows calving within 10 days of their
predicted calving date. Currently, physiological signs predic-
tive of calving include pelvic ligament relaxation, udder dis-
tention, teat filling, vaginal discharge, vulva oedema (Miedema
et al., 2011; Streyl et al., 2011), which are basically subjective.
Most accurate and sensitive methods to date for prediction of
calving within 24 hours are the measurements of pelvic liga-
ment relaxation and assays for circulating progesterone and
oestradiol-17β (Saint-Dizier and Chastant-Maillard, 2015).

Environmental sustainability of Precision livestock
farming

Concerns on the negative impact of livestock production
systems on animal welfare and environmental impact have led
to increasing interest in digitalization of animal agriculture
through precision livestock farming (Klerkx et al., 2019). Envi-
ronmental problems emanate from greenhouse gas emissions
and nitrogen excretion from ruminant production. Objective
digital technologies could mitigate against the impact of live-
stock production systems on the environment. For example,
Biometric real-time sensors are being exploited as accurate,
non-invasive, and inexpensive technique for estimating
methane emissions on farm (Munoz-Tamayo et al., 2019). Cir-
cular bioeconomy livestock focus could be another avenue of
reversing the negative environmental effects of current animal
agriculture practices. Including environmental traits and their
economic weights in the dairy cattle breeding goal is one of
the remedies to ensure environmental sustainability. A com-
bination of biometric sensors, big data, artificial intelligence,
and bioinformatics technologies can aid to identify and select
candidates with desirable traits for breeding programs 

Conclusion and Recommendations

This study highlighted key areas where digital technolo-
gies are currently applicable as far as animal agriculture is con-
cerned. It is evident that digitalization of animal agriculture
not only improves efficiency of production but also caters for
animal welfare and environmental sustainability. Although the
proportion of farmers using technology in the tropics is rela-
tively low at the moment, in the near future, it will be wide-
spread. Cost implications, low level of production of
genotypes kept and lack of awareness are some of the likely
reasons for low rate of use of objective measures in dairy cat-
tle. Besides that, the low stocking densities, and low produc-
tion per animal in the tropics, could be some of the factors
slowing down adoption rates of precision livestock farming
technologies. There is need for further study to assess digital
technologies (objective measures) for improved animal mon-
itoring and where they work best in the developing countries.
Secondly objective measuring tools that create more sustain-
able production systems in Africa need to be identified.
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